Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067060

RESUMO

A study was conducted to evaluate the effects of different sources and levels of supplemental amino acid-complexed minerals (AACM), with and without enzyme phytase (EZ). A total of 512 Dekalb White laying hens at 67 weeks of age were used in a 2 × 3 + 2 factorial arrangement of 8 treatments and 8 replications each. The main effects included EZ supplementation (10,000 FTU kg-1) and AACM inclusion level (100, 70, and 40% of inorganic mineral recommendations), plus 2 control treatments. The group of hens fed AACM-100 showed lower feed intake than the inorganic mineral (IM) group. The diet containing AACM-EZ-70 provided a higher (p < 0.05) laying percentage and a lower (p < 0.05) feed conversion ratio than both the IM and IM-EZ diets. The groups fed AACM-EZ-40, AACM-EZ-100, and AACM-70 produced heavier yolks (p < 0.05). Hens fed IM laid eggs with the lowest yolk and albumen weights (p < 0.05). Layers fed with AACM-100 and AACM-70 produced the most resistant eggshells to breakage (p < 0.05). In diets containing phytase, the optimal AACM recommendations for better performance and egg quality in older laying hens are: 42, 49, 5.6, 28, 0.175, and 0.70 mg kg-1 for Zn, Mn, Cu, Fe, Se, and I, respectively.

2.
Poult Sci ; 99(12): 6774-6782, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248593

RESUMO

Broiler embryonic development depends on the nutrients that are available in the egg, which includes mostly water, lipids, and proteins. Carbohydrates represent less than 1%, and free glucose only 0.3%, of the total nutrients. Considering that energy requirements increase during incubation and metabolism is shifted toward the use of glycogen stores and gluconeogenesis from amino acids, extensive muscle protein degradation in the end of incubation can compromise chick development in the initial days after hatch. Significant prehatch changes occur in embryonic metabolism to parallel the rapid embryonic development. Oral consumption of the amniotic fluid begins around 17 d of incubation and promotes rapid development of the intestinal mucosa, which is characterized by morphological changes and increased expression and activity of enzymes and transporters. Furthermore, ingested substrates are stored as nutritional reserves to be used during hatching and in the first week after hatch. At hatch, this limited-nutrient store is directed to the functional development of the gastrointestinal tract to enable assimilation of exogenous nutrients. In ovo feeding is an alternative to deliver essential nutrients to chick embryos at this critical and challenging phase. The improved nutritional status and physiological changes triggered by in ovo feeding can resonate throughout the entire rearing period with significant health and economic gains. The present review addresses the main changes in metabolism and intestinal development throughout incubation, and also addresses scientific advances, limitations and future perspectives associated with the use of in ovo feeding that has been regarded as an important technology by the poultry industry.


Assuntos
Criação de Animais Domésticos , Galinhas , Metabolismo Energético , Animais , Embrião de Galinha , Galinhas/anatomia & histologia , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Gluconeogênese , Glicogênio/metabolismo , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...